

Computing Discharge Using the Index Velocity Method

Karl E. Winters Texas Water Science Center Surface-Water Specialist

August 22, 2013

U.S. Department of the Interior

U.S. Geological Survey

Agenda

- Introduction the index-velocity method
- The gage at SH 35 and a look at the data
- Standard ratings vs. index-velocity ratings
- Rating development at SH 35

Index-Velocity Method

The index velocity method is used to compute discharge based on stream velocity and cross sectional area

The index velocity method may be used to determine discharge for streams with:

- Variable backwater
- Tidal influence
- Seasonal variation in vegetation or algae

08188810 Guadalupe River at SH 35 near Tivoli, TX

08188810 Guadalupe River at SH 35 near Tivoli, TX

- Acoustic velocimeter (AVM) installed April 2013
- 8 streamflow measurements made, 24.6 3,100 cfs

Streamflow measurements made at Guadalupe River at SH 35 near Tivoli, TX

Streamflows are affected by regulation and diversion... ... and tides

Stream stage and velocity data for Guadalupe River at SH 35 near Tivoli, TX

The index velocity method is especially appropriate when more than one discharge can be measured for a given stage.

Standard Rating

"Not-so-Standard" Rating

Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating.

The outputs from each of these ratings, mean channel velocity (*V*) and cross-sectional area (*A*), are then multiplied together to compute discharge.

$$Q = V \times A$$

Stage-Discharge Method

Index Velocity Method

Standards and guidance

Computing Discharge Using the Index Velocity Method,
Techniques and Methods 3–A23

Stage-area ratings, 10 and 35 ft upstream from SH 35

Index-Velocity Relation at SH 35

We are currently investigating index-velocity relations for various cell ranges between 0 and 35 feet from the AVM

Computing Discharge Using the Index Velocity Method

Karl E. Winters, P.E. kwinters@usgs.gov 512-927-3560

U.S. Geological Survey Austin, TX

Questions?

